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Abstract
The structural, electronic, and magnetic properties of FeSi are investigated
by first-principles all-electron density functional calculations. The interplay
between non-local exchange and correlations is studied by comparing results
obtained with standard density functionals, the hybrid functional B3LYP and
the Hartree–Fock ansatz. The calculations are performed using a local basis set.
For the standard functionals, previous theoretical results for the non-magnetic
semiconducting ground state are well reproduced. With the hybrid functional
B3LYP, a magnetic metallic solution is found in addition to the non-magnetic
low-energy semiconducting one. The influence of the non-local exchange is also
reflected in the increased value of the indirect gap which separates the valence
and conduction bands.

1. Introduction

Magnetic semiconductors are attracting great scientific interest because of their potential use
for spintronics. Promising candidates for technological applications are the transition metal
monosilicides and their alloys. These materials exhibit rich phase diagrams reflecting the great
sensitivity with respect to changes in external control parameters like temperature, pressure,
and magnetic field. An indispensable prerequisite for technical applications is therefore
a microscopic understanding of the subtle interplay between the structural, electronic, and
magnetic properties.

FeSi is experimentally found to have a non-magnetic ground state and a narrow excitation
gap of � < 0.1 eV [1–3]. The unusual variation with temperature of the magnetic susceptibility
[4] and of the resistivity exhibit similarities with the behaviour found in lanthanide compounds
like CeNiSn and Ce3Bi4Pt3. This fact prompted some groups to model FeSi as a transition
metal analogue of a Kondo insulator [5, 6]. This model, in turn, implies adopting a localized
picture for the Fe d electrons and to describe them as local moments. The alternative itinerant
picture [7], on the other hand, is supported by detailed band structure calculations within the
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local density approximation (LDA) [8–11]. The latter correctly yield a non-magnetic insulating
ground state and a small indirect gap of �LDA ∼ 0.1 eV. In addition, the experimental geometry
is well reproduced [11, 12].

Despite this success of LDA and the generalized gradient approximation (GGA), important
questions remain open. Prominent among them is the variation with temperature of the
magnetic susceptibility, which points to the existence of metastable low-energy magnetic
states. The fact that the latter cannot be reproduced in LDA or GGA indicates that the local
effective single-particle picture does not fully capture the complex low-energy physics. An
adequate description of the electronic structure must account for non-local exchange and local
Coulomb correlations. The consequences of the latter were studied by Anisimov et al [13], who
augmented the LDA treatment by a finite Coulomb repulsion U . The model studies yielded a
metastable magnetic state; the required values for U , however, were rather large. The ab initio
calculations presented here explore the influence of non-local exchange in that they could be
considered as complementary to the correlation model study.

The Hartree–Fock (HF) approach, which exclusively accounts for the non-local exchange
neglecting correlation effects, on the other hand, usually yields too large a theoretical value for
the gap. Hybrid functionals which mix Fock exchange with standard functionals have recently
become popular in solid state physics [14] because they often improve the results for electronic
properties, especially band gaps [15–17]. It is thus interesting to explore this system with
the hybrid functional B3LYP [18, 19] (for a brief review see also [20]) and the Hartree–Fock
approach, in addition to the standard LDA and GGA functionals. A comparison of the band
gap with the various schemes can be made, and the question of possible magnetic solutions can
be addressed.

The intent of the present paper is twofold. The main purpose is to further assess the range
of validity of the itinerant band picture in FeSi. This is achieved by extending the density
functional theory (DFT) calculations to hybrid functionals which recently became available
for solids. In addition, the pure Hartree–Fock approach is applied to get an insight into
the interplay of non-local exchange and electronic correlations. The quantities chosen for
discussion include ground state properties like the lattice constant and internal coordinates in
the equilibrium as well as the band gap. The (meta)stability of magnetic and metallic solutions
is discussed. The effective Schrödinger equation is solved using a local basis with Gaussian
type orbitals. This paper therefore also aims at establishing the usage of Gaussian type orbitals
as basis functions for this class of systems. To demonstrate the flexibility and reliability of the
computational scheme we compare our results to reference data obtained from standard band
structure methods wherever possible.

The paper is structured as follows. Section 2 gives a brief exposition of the methods and
approximations employed. The numerical procedure adopted in the actual calculation is tested
in section 3. In the subsequent sections 4 and 5 we give details of the models and results
obtained. The conclusions are summarized in section 6.

2. Method and calculational details

FeSi is considered in its experimentally established B20 structure with a unit cell containing
four silicon and four iron atoms. This structure is referred to as ε-FeSi and it has 12 symmetry
operations. The space group is P213 (198) and the point symmetry at the iron or silicon site is
C3. Fe has seven Si neighbours, whose distance is dependent on the internal coordinates. The
experimental values for the lattice constant and the internal coordinates at ambient pressure are
a = 4.489 Å, uFe = 0.137, and uSi = 0.842, respectively [21]. The latter indicate significant
deviations from the rock salt structure B1 which is characterized by uFe = 0.25 and uSi = 0.75.
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Table 1. Diffuse exponents of the basis functions.

Fe Si

sp sp d sp sp d

LDA/GGA 0.53 0.13 0.27 0.45 0.18 0.53
B3LYP/HF 0.53 0.15 0.27 0.47 0.17 0.55

First-principles all-electron calculations were performed within the framework of DFT.
The exchange–correlation functionals considered include the local density approximation with
the Perdew–Zunger parameterization [22] derived from the Ceperley–Alder data and the
gradient-corrected Perdew–Wang functional PW91 [23] as a variant of the generalized gradient
approximation, which is referred to as GGA in the following. Of particular interest is the hybrid
functional B3LYP which allows us to incorporate the non-local exchange. To better understand
the role of electronic correlations, we compare the results to those obtained with the HF method.

All-electron calculations using a local basis set formalism were performed with the code
CRYSTAL2003. A detailed description of the method is found in [24]. For a given functional
we choose a fixed set of Gaussian type orbitals centred at the position of the atoms. The single-
electron wavefunctions are represented as linear combinations of these basis functions. The
present calculations use a basis set consisting of a [6s5p2d] basis at the Fe site and a [5s4p1d]
basis at the Si site. The inner basis functions ([4s3p1d] for Fe and [3s2p] for Si) were taken
from [25] and [26], respectively. Two more diffuse sp shells and one diffuse d shell were added
to these basis sets. The latter were determined so as to minimize the total energy of FeSi in a
hypothetical rock salt structure. The exponents of these additional basis functions are given in
table 1.

A �k-point sampling net of size 16 × 16 × 16 was used. A smearing temperature of 0.01
Eh ≈ 0.272 eV was applied to the Fermi function. A fully numerical integration was performed
with an enlarged grid having 75 radial points and a maximum number of 434 angular points.

The electronic structure depends rather sensitively on the lattice parameters. For all
effective single-particle models (HF, LDA, GGA and B3LYP), the optimal theoretical structure
was determined. The internal coordinates, uFe and uSi, were determined using analytical
gradients [27–29]; the equilibrium lattice constant was obtained by numerically determining
the minimum of the total energy.

To search for metastable magnetic states, spin polarized calculations were performed for
the lattice parameters as in [8] and for the optimized geometries of the present work.

3. Test of the basis set and the computational method

To demonstrate the accuracy and reliability of the computational method, we adopt both the
LDA and GGA and compare the theoretical results for electronic and structural properties
obtained with the local Gaussian type orbitals to reference data derived by other band structure
methods. The latter include the linear augmented plane wave (LAPW) method and its full-
potential version (FLAPW) as well as the ultra soft pseudopotential (USPP) method.

All methods consistently yield an insulating ground state. The values of the indirect band
gap are listed in table 2 together with the structural parameters and the available experimental
data. The results obtained using the Gaussian type orbitals are in excellent agreement with
the corresponding FLAPW and USPP calculations and, in turn, with experiment. This
demonstrates that CRYSTAL2003 provides a reliable and efficient method for geometry
optimization.
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Table 2. Results of the optimized geometry obtained by using the LDA and GGA. The lattice
constant a and the internal coordinates of iron uFe and of silicon uSi were optimized. The bulk
modulus B and the indirect band gap �ind are displayed.

a B �ind

(Å) (GPa) uFe uSi (eV)

LDA (present work) 4.39 264 0.140 0.843 0.121
LDA-FLAPW [11] 4.41
LDA-USPP [11] 4.38

GGA (present work) 4.46 224 0.139 0.842 0.151
GGA-USPP [11] 4.46; 4.47 209 0.136 0.841 0.15

Exp. 4.489 [21] 185 [30]; 209 [31] 0.137 [21] 0.842 [21] <0.1 [1–3]

Table 3. Results of the different methods calculated with the lattice parameter a = 4.493 Å and the
internal coordinates uFe = 0.1358 and uSi = 0.844. The indirect band gap �ind, the total charges
of iron and silicon, and the charges of iron sp and d basis functions are displayed.

�ind Fe sp Fe d Fe total Si total
(|e|) (|e|) (|e|) (|e|) (|e|)

LDA 0.125 19.53 7.12 26.64 13.36
GGA 0.149 19.51 7.09 26.60 13.40
B3LYP 1.472 19.23 7.17 26.40 13.60
HF 6.140 19.42 6.93 26.36 13.65

4. Hybrid functionals and the role of non-local exchange: non-magnetic states

We next turn to the question of how the theoretical values for the structural and electronic
properties are affected by the non-local exchange which is accounted for in the hybrid
functional B3LYP. The focus is on the interplay between the latter and the correlation effects as
described by LDA and GGA in the class of systems under consideration. With this objective,
we compare the results obtained with B3LYP to their counterparts derived from HF. To illustrate
the consequences arising from the differences in the treatment of the many-electron problem,
we proceed in two steps. First we discuss the electronic properties at fixed geometry. We
choose the same values for the lattice parameters as in [8], which are close to the experimental
ones. In the second step, we determine the optimized geometry for the hybrid functional and
the HF ansatz in close analogy to the procedure described in the preceding section. Throughout
this section, we restrict ourselves to non-magnetic ground states and postpone the discussion of
their stability to the next section.

4.1. Calculations at fixed geometry

The results for non-magnetic states at fixed geometry are summarized in table 3. The system
appears to be rather covalent as the Mulliken population shows only small charge transfer
from Si to Fe. Characteristic differences, however, appear in the band structure. This can
be seen from the fact that the values of the indirect energy gap depend rather sensitively on
the detailed effective single-particle model. LDA and GGA both give a small value which
agrees remarkably well with the experiment. It was argued [8] that this was due to the fact
that the states on both sides of the band gap are similar, since they are dominated by the Fe d
states. Generally, the correction to the gap can be expressed in terms of the matrix elements of
the self-energy operator evaluated with the valence and conduction band wavefunctions [32].
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Figure 1. Projected density of states for the different methods relative to the top of the valence band
which is fixed at 0 eV. The straight line is the projection onto the Fe 3d band and the dashed line
that onto the Si 3p band. The inset visualizes the Hartree–Fock band structure.

When the valence and conduction bands are similar, i.e., when the corresponding wavefunctions
are derived from atomic orbitals of the same symmetry, the local (dynamic) self-energy
contributions change only weakly across a narrow gap. As a result, one expects a rather
small correction to the gap, which explains why the LDA gap is in good agreement with the
experiment.

The gap is strongly overestimated by the HF method. This failure is well known from
conventional semiconductors like Si, where it is usually attributed to the lack of screening.
The B3LYP value of ∼1.5 eV is intermediate between LDA and HF values. This is to be
expected, since this hybrid functional essentially augments the LDA by non-local exchange.
These findings for narrow gap semiconductors disprove the speculation that a naive single-
particle picture derived from B3LYP will give a better value for the energy gap than LDA does.

The differences in the electronic structure are associated with the Fe d states. This can
be seen from the projected densities of states (PDOSs) displayed in figure 1. The results can
be summarized as follows. LDA and GGA, whose PDOSs exhibit only marginal differences,
support an itinerant picture for the Fe d electrons. The HF ansatz, on the other hand, suggests a
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Figure 2. Band placements of the Fe 3d and Si 3p band for the investigated methods
relative to the top of the valence band. The centres of the bands were calculated by 〈E〉 =∫

N(E)E dE/
∫

N(E) dE with the corresponding projected density of states N(E). Calculating√〈E2〉 − 〈E〉2 yields to the effective band width.

(partially) localized description. This can be concluded from the fact that the band states in the
vicinity of the top of the valence band have predominantly d-character for LDA and GGA while
the spectral weight for the Fe d states is concentrated far away from the top of the valence band,
at the HF level. The B3LYP density of states can be interpreted as an intermediate step between
LDA or GGA and HF combining the characteristic features of the standard functionals (the high
Fe d contribution close to the top of the valence band) and of HF (the broadening of the band
gap and transfer of Fe d spectral weight from the low-energy to the high-energy regime).

For a more qualitative comparison, the band centre 〈E〉a and effective band widths√〈E2〉a − 〈E〉2
a were calculated. Here 〈. . .〉a with a = Fe d or a = Si p denotes the average

〈. . .〉a = ∫
Na(E) . . . dE/

∫
Na(E) dE formed with the PDOS for the Fe d or Si p states. The

data are displayed in figure 2. Obviously, the widths of the Si p and Fe d HF bands are enlarged
relative to their LDA counterparts. Focusing on the region close to the top of the valence band,
we notice that the absolute position of the bottom of the Si p band is roughly the same with
all methods. Thus, the main change in the Si bands is the position of the band centre and the
width, which does however not have a huge influence on the physics close to the top of the
valence or bottom of the conduction bands. The important differences which affect the low-
energy behaviour are related to the Fe d band. Both the upper and the lower band edge of LDA,
B3LYP and HF are different. The LDA and GGA results are similar and have the smallest
band width. However, it should be mentioned that figure 2 gives only a crude description of the
bands, and in particular the band gap is not visible in the band placements.

4.2. Optimized geometry

The differences in the electronic structure are reflected in the theoretical values for the
equilibrium lattice parameters. The latter are listed in table 4 together with their experimental
values. Excellent agreement is found among the values derived from LDA, GGA and the hybrid
functional B3LYP. The HF geometry, on the other hand, differs significantly from the above-
mentioned DFT results. The large lattice constant may arise from the fact that the Fe d electrons
have a more localized character and consequently contribute less to the binding. This large
lattice constant also leads to a relatively small value of the bulk modulus. Apart from an overall
inflation of the lattice, the HF geometry is characterized by a different internal atomic position
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Figure 3. The band structure and density of states of the different methods with the corresponding
optimized geometry of table 4. The band structure is plotted along the high symmetry points of the
B20 structure and is relative to the top of the valence band.

Table 4. Results of the optimized geometry obtained by using the LDA, GGA, B3LYP functional
and the Hartree–Fock method. The lattice constant a and the internal coordinates of iron uFe and
of silicon uSi were optimized. The geometrical parameters, the resulting bulk modulus B and the
indirect band gap �ind are displayed.

a B �ind

(Å) (GPa) uFe uSi (eV)

LDA 4.39 264 0.140 0.843 0.121
GGA 4.46 224 0.139 0.842 0.151
B3LYP 4.45 230 0.135 0.840 1.531
HF 4.81 53 0.152 0.846 3.362
Exp. 4.489 [21] 185 [30]; 209 [31] 0.137 [21] 0.842 [21] <0.1 [1–3]

parameter for the Fe site, uFe. The corresponding Si value deviates only slightly from the DFT
values.

The changes in the atomic positions are also reflected in the dispersion of the energy bands
displayed in figure 3. As expected, the LDA and GGA band structures are rather similar.
Of particular interest are the magnitudes of the band gaps and the positions in �k-space they
involve. For LDA, GGA, and B3LYP the minimum gap is indirect and involves the valence
band maximum along �R and the conduction band minimum along �M . The non-local
exchange increases the magnitude of the indirect band gap which rises from 0.12 and 0.15 eV
for LDA and GGA to 1.53 eV for B3LYP. The HF gap decreases strongly compared to the
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Table 5. Results of the optimized geometry obtained by using the LDA, GGA, B3LYP functional
and the Hartree–Fock method. The lattice constant a and the internal coordinates of iron uFe and of
silicon uSi were optimized. The resulting iron and silicon charges are displayed.

Fe sp Fe d Fe total Si total
(|e|) (|e|) (|e|) (|e|)

LDA 19.49 7.16 26.65 13.35
GGA 19.49 7.10 26.59 13.42
B3LYP 19.24 7.20 26.44 13.56
HF 19.53 6.66 26.18 13.82

value at the shorter lattice constant in table 3, from ∼6 to ∼3 eV. This decrease of the gap with
increasing lattice constant is somewhat unexpected, but can be explained due the fact that the
iron sp occupancy and the silicon charge slightly increase and thus the broad sp bands get more
occupied, which results in a larger band width and thus a smaller gap. This is especially visible
when comparing the HF bands at the R point (figures 1 and 3).

The maximum direct band gap occurs for LDA, GGA and B3LYP (1.15 eV, 1.11 eV,
2.85 eV) at the R point, whereas the maximum direct gap for HF is at the M point (6.62 eV).
The minimum direct gap of LDA and GGA occurs along the �M direction (0.18 eV, 0.21 eV)
in contrast to B3LYP and HF, where the minimum direct gap is located along �R (1.59 eV,
4.07 eV). The band structure obtained by the plane wave method [11] is similar to the present
GGA band structure.

The total density of states for the optimized geometry is displayed in figure 3. The
LDA, GGA and B3LYP DOS is virtually identical to the one obtained with the parameters in
section 4.1, as the computed equilibrium geometry is close to the geometry used in section 4.1.
In the vicinity of the gap, there is a large contribution of the d states to the total DOS; see
figure 3 for details. This is due to the fact that there are several places in the band structure
where the bands at the top of the valence band are very flat and thus the DOS is large. The
B3LYP method yields to a greater gap and a smaller contribution at the top of the valence band,
because there are fewer places with a flat dispersion near the top of the valence band.

In contrast, the HF method gives a completely different picture of the DOS. The states near
the gap are p like, and the d states are pushed even further away from the top of the valence
band, with a relatively high peak beginning at around −10 eV.

The Mulliken charges are displayed in table 5. Si is slightly positively charged, which
agrees very well with recent x-ray fluorescence experiments where the charge was determined
to be 0.56 |e| [33].

5. Low-energy magnetic states

We next turn to the question of whether the theoretical non-magnetic insulating state is indeed
stable with respect to magnetism. In addition, we are interested in whether DFT allows for
metastable magnetic states at low energies. In searching for magnetic self-consistent solutions,
we adopt the optimized lattice parameters derived in the previous section. Technically, we
start from a symmetry-broken state characterized by a finite polarization and iterate the spin
densities to self-consistency.

For LDA and GGA, the iteration procedure always converged to the non-magnetic
insulating state analysed in the preceding section. We therefore conclude that this state is
indeed the theoretical ground state for LDA and GGA.

For the HF approximation, however, a ferromagnetic solution is found whose energy is
lower by 12 eV per unit cell (containing four iron and four silicon atoms) compared to the
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Table 6. Results of the spin polarized calculation with the corresponding optimized geometry of
table 4. EFM–NM is the difference of energy between the spin polarized calculation and the non-
magnetic solution, per unit cell (containing four iron and four silicon atoms). The corresponding
magnetization M of the magnetic state is per iron atom. Additionally the total charge of the iron
and silicon atom and the charge of the Fe d basis functions are displayed.

EFM–NM MFe MSi Fe total Fe d Si total
(eV) (µB) (µB) (|e|) (|e|) (|e|)

B3LYP +0.335 1.64 −0.23 26.38 7.13 13.62
HF −12.020 3.82 −0.23 25.95 6.07 14.05

non-magnetic solution. The characteristic properties are summarized in table 6. The presence
of a magnetic ground state within HF seems plausible considering the fact that the Hartree–
Fock method leads for the insulating system to a stronger localization and thus larger Coulomb
repulsion, when compared with the LDA approach. Thus, a magnetic solution can become
favourable, to reduce the Coulomb repulsion by occupying the d orbitals in a different way for
up and down spin, in analogy to Hund’s rules. In addition the larger lattice constant implies a
larger Fe–Fe separation, i.e. approaching the atomic limit, and thus with a stronger tendency to
magnetism. Accounting for Hund’s rule coupling among the localized Fe d electrons leads to a
local moment of 4 µB at the Fe site. The energy gain as compared to the non-magnetic state is
consistent with the energy gain due to Hund’s rule coupling.

For B3LYP, a low-energy magnetic solution is found whose energy exceeds the one of the
non-magnetic state by 0.3 eV. Similarly to the discussion for the HF solution in the previous
paragraph, also B3LYP leads to more localized states (though not as localized as the HF states)
and thus magnetic states become more favourable, compared to LDA. The magnetic moment
amounts to 1.6 µB per Fe atom. It is interesting to note that the density of states in the minority
spin channel vanishes slightly above the Fermi level. With electron doping, this solution might
thus become half-metallic, i.e. conducting for only one type of spin, which is indeed observed
for Fe1−xCoxSi [34]. We would like to emphasize that a solution of this type is not necessarily
the B3LYP ground state with electron doping. The existence of such a solution is, however,
very interesting.

The magnetic solutions obtained within the HF and B3LYP level are metallic in the sense
that the bands continuously cross the Fermi energy. The position of the Fermi energy is
defined as zero in figure 4, and the bands and the density of states are given with respect
to the Fermi energy. Fock exchange leads to a logarithmic singularity at the Fermi energy,
which, in turn, implies a divergent derivative ∇�kε(�k). The latter results in a vanishing density
of states at the Fermi energy, for the homogeneous electron gas [35] and for metallic systems
in general [36]. The vanishing density of states is however very difficult to be reproduced
numerically, due to the difficulty of summing the exchange [37–39] and due to the large number
of �k-points required [40]. This explains why in figure 4, the DOS does not vanish at the
Fermi level.

6. Conclusion

We have studied the structural, electronic, and magnetic properties of FeSi by first-principles
all-electron DFT calculations using a local basis of Gaussian type orbitals. The LDA and
GGA results are in good agreement with previously published theoretical data. These findings
convincingly demonstrate the reliability of the computational procedure for electronic structure
calculations and structure determination in the class of systems under consideration.
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Figure 4. Total density of states and band structure of α and β electrons of the magnetic state
obtained by using the B3LYP functional and the Hartree–Fock method. The calculations were
performed with the optimized geometry of table 4. The Fermi energy is positioned at 0 eV.

Accounting for non-local exchange contributions significantly increases the indirect gap
which separates the valence and conduction bands in the non-magnetic low-energy state.
In general, the non-local exchange drives the system towards magnetism. This is clearly
evident from HF calculations, which favour a magnetic metallic ground state. For the hybrid
functional B3LYP, the latter state is found to be metastable. A detailed investigation of the
low-temperature phase diagram and its implications is currently in progress.
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